Download

Download Manuals, Datasheets, Software and more:

DOWNLOAD TYPE
MODEL or KEYWORD

Feedback

Testing Wide Bandgap Semiconductors

The characterization of intrinsic variables (IV) is crucial for developing wide bandgap semiconductors. These semiconductors, which have superior electrical properties compared to traditional materials, have a wide range of potential applications in power electronics. Understanding the I-V characteristics of these materials will allow for their optimal use and development.

Safely and sustainably creating more efficient designs

Tektronix IV Characterization - image about SiC and Gan demand for 5G, automotive, and energy systems

Silicon Carbide and Gallium Nitride demand for 5G, automotive, and energy systems is rising


Learn More:

Are You Making the Big 'Power' Switch to SiC and GaN?

New High Power Semiconductor Devices are Pushing Instrumentation to Extremes

How SiC and GaN are changing the industry

ISiC and GaN are being used in a wide range of applications, including power electronics, high-frequency electronics, LEDs, and aerospace and defense. They are enabling the development of more efficient and advanced technologies in these fields, and are driving innovation and progress.

Pulsed I-V Characterization

Pulsed I-V is a useful technique for measuring the electrical properties of semiconductors and devices. By applying short voltage pulses, we can analyze the device's resistance, capacitance, and other performance indicators. This technique is valuable for device engineers, researchers, and designers in the power semiconductor industry to develop advanced and efficient electronics.

Tektronix IV Characterization - screen capture of Keithley KickStart Software reverse breakdown voltage test

Reverse breakdown voltage test using Keithley KickStart Software and a 2470 High Voltage SourceMeter® Source Measure Unit (SMU).


Learn More:

Reverse Breakdown Voltage Test Demo

2470 Breakdown and Leakage Current Measurements on High Voltage Semiconductor Devices

Evaluate Breakdown Voltage to Ensure Reliability

Testing for breakdown voltage typically involves subjecting a device to increasing voltage levels until it experiences a breakdown in its electrical insulation properties. The breakdown voltage can be measured using specialized test equipment and procedures, and may depend on a variety of factors such as the material's properties, its thickness, and the geometry of the device.

Testing for breakdown voltage is an important procedure for ensuring the reliability and performance of electrical and electronic devices.

Explore and Measure the Family of Curves

The family of curves is an essential concept in engineering that plays a crucial role in designing and analyzing complex systems. These curves are a group of graphical solutions that share similar characteristics and functional relationships between their parameters. Engineers use these curves to understand the behavior of a system under different conditions, such as load, stress, temperature, and pressure. They also employ them to optimize the performance of industrial processes by selecting the best design parameters. From electrical to mechanical engineering, the family of curves is an indispensable tool that helps engineers make informed decisions and create efficient solutions.

Graphic showing IV Characterization MOSFET threshold voltage on a Tektronix 4200A-SCS Parameter Analyzer

4200A-SCS Parameter Analyzer displaying MOSFET threshold voltage.


Learn More:

Top 7 Characterization Tests for MOSFETs

Tips and Techniques to Simplify MOSFET-MOSCAP Device Characterization

Switch and Amplify Circuits Easily with MOSFETs

MOSFETs, or Metal-Oxide-Semiconductor Field-Effect Transistors, are one of the most commonly used electronic components in modern engineering design. MOSFETs have revolutionized electronics engineering by being highly efficient and versatile enabling smaller and more efficient circuits, which are essential in modern-day electronics. While they have become essential in today's electronics, it is crucial to accurately measure MOSFETs. Measuring MOSFETs usually involves determining their electrical characteristics, such as resistance, capacitance, and current-voltage (I-V) curves. Engineers use various techniques and instruments to measure MOSFETs' performance, which allows them to optimize circuit designs and ensure reliable operation.

Products

SMU 2650 Series for High Power

  • Power Semiconductor GaN, SiC
  • Solar Panel Test
  • Electromigration studies
  • Semiconductor junction temperature characterization
2470 SMU front image for product series

Keithley 2400 Graphical Touchscreen Series SMU

  • Nanostructured Materials Research
  • Power Semiconductor GaN, SiC
  • Biosensor Development
  • Semiconductor Device Design
  • Automotive Sensor Design
Parametric Curve Tracer Configurations

I-V Curve Tracer Configurations

Complete solutions for high power semiconductor device characterization

半導体パラメータアナライザ

Keithley 4200A-SCS Parameter Analyzer

A fully integrated solution to characterize materials, processes and semiconductor devices

Resources

Webinar

SiC- GaN Components - 5 Key Tests

Webinar addresses the measurement challenges associated with components made from wide bandgap materials.
Product Features

4200A-SCS Parameter Analyzer Product Overview Video

This short video provides an overview of the Keithley 4200A-SCS, a powerful and customizable parameter analyzer for …
Application Note

Power Sequence for GaN HEMT Characterization

In order to measure the I-V characteristics of gallium nitride (GaN) high electron mobility transistor (HEMT), a special …
Product Article

Testing Power Semiconductor Devices with Keithley High Power System SourceMeter SMU …

Keithley’s SourceMeter Source Measure Unit (SMU) instruments give both device test engineers and power module design …
Application Note

Solving Connection Challenges in On-Wafer Power Semiconductor Device Test Application …

  Introduction Measuring DC and capacitance parameters for high power semiconductor devices requires sufficient …