Kontaktaufnahme

Live-Chat mit Tektronix-Vertretern. Verfügbar von 9 bis 17 Uhr CET Geschäftstage.

Anrufen

Kontaktieren Sie uns telefonisch unter

Verfügbar von 9 bis 17 Uhr CET Geschäftstage.

Download

Laden Sie Handbücher, Datenblätter, Software und vieles mehr herunter:

DOWNLOADTYP
MODELL ODER SCHLÜSSELWORT

Feedback

Wie Sie das beste Oszilloskop für den Kauf auswählen

Suchen Sie nach dem richtigen Oszilloskop für Ihre Elektronik-Projekte oder Ihre beruflichen Vorhaben? Dieser Leitfaden bietet Ihnen eine klare Übersicht zur Auswahl des Oszilloskops, das Ihren Anforderungen am besten entspricht. Dabei spielt es keine Rolle, ob Sie ein erfahrener Ingenieur, ein Student oder ein Elektronikbastler sind. Wir gehen auf wichtige Parameter wie Bandbreite, Abtastrate und Anstiegszeit ein, um sicherzustellen, dass Sie eine fundierte Wahl treffen, die die Präzision und Effizienz Ihrer Messungen verbessert.

Wofür werden Oszilloskope verwendet? 

Ein Oszilloskop, früher auch als Oszillograph (umgangssprachlich Scope, Oscope oder O-Scope) bezeichnet, ist ein Tischinstrument, das elektrische Signale grafisch darstellt und zeigt, wie sich diese Signale im Laufe der Zeit verändern. Sie werden von Ingenieuren zur Fehlersuche in Schaltungen und zur Überprüfung der Signalqualität verwendet. Die meisten Ingenieure verwenden ein digitales Oszilloskop, worauf wir uns hier konzentrieren werden. Digitale Oszilloskope erfassen und speichern Wellenformen, die die Spannung eines Signals, die Frequenz, den Anteil des Rauschens am Signal, die Verzerrung des Signals, den zeitlichen Abstand zwischen den Signalen und vieles mehr anzeigen.

Grundlegende Parameter für die Auswahl eines Oszilloskops

Bandbreite des Oszilloskops

Die Bandbreite ist eine der wichtigsten Eigenschaften, die die höchste Frequenz bestimmt, die Ihr Oszilloskop genau messen kann. Sie ist ein wichtiger Faktor, der sowohl die Funktionalität als auch die Kosten des Oszilloskops beeinflusst.

Vorderansicht des Serie 3 MDO

Je höher die Bandbreite ist, desto genauer ist die Wiedergabe Ihres Signals, wie die Abbildung mit einem Signal zeigt, das mit einer Bandbreite von 250 MHz, 1 GHz und 4 GHz aufgezeichnet wurde.

Mehr über die Bandbreite erfahren

So können Sie Ihren Bandbreitenbedarf berechnen

Bei der Auswahl eines Oszilloskops empfiehlt es sich, die folgende Formel zu verwenden, um sicherzustellen, dass Sie die höchste Frequenzkomponente Ihres Signals abdecken:

Wenn Ihre höchste Signalfrequenz beispielsweise 20 MHz beträgt, sollten Sie ein Oszilloskop mit einer Bandbreite von mindestens 60 MHz wählen.

Oszilloskop-Anstiegszeit

Die Anstiegszeit ist für digitale Anwendungen von entscheidender Bedeutung, da sie die Fähigkeit des Oszilloskops angibt, schnelle Änderungen in einem Signal zu verfolgen.

Charakterisierung der Anstiegszeit eines digitalen Hochgeschwindigkeitssignals.

Mehr über die Anstiegszeit erfahren

Berechnen Sie die für Ihr Oszilloskop benötigte Anstiegszeit

Die Anstiegszeit des Oszilloskops sollte deutlich kürzer sein als die schnellste Anstiegszeit in Ihrem Signal. Verwenden Sie diese Formel, um ein geeignetes Oszilloskop zu finden:

Bei einem Signal mit einer Anstiegszeit von 4 ns sollte die Anstiegszeit des Oszilloskops weniger als 1,33 ns betragen.

Oszilloskop-Abtastrate

Die Abtastrate gibt an, wie häufig das Oszilloskop das Signal abtastet, welches einen Einfluss auf die Detailgenauigkeit der erfassten Wellenform hat.

Eine höhere Abtastrate sorgt für eine bessere Signalauflösung und stellt sicher, dass Sie intermittierende Ereignisse erkennen können.

Mehr über die Anstiegszeit erfahren

Bestimmen Sie die richtige Abtastrate für Ihr Oszilloskop

Für die Wahl einer angemessenen Abtastrate sollten Sie die folgende Richtlinie verwenden:

Für ein Signal mit einer maximalen Frequenz von 20 MHz sollten Sie ein Oszilloskop mit einer Abtastrate von mindestens 200 MS/s verwenden. Dies gewährleistet eine detaillierte Erfassung der Wellenform und erleichtert eine genaue Analyse.


Other Considerations for Oscilloscope Selection 

Channel density of an oscilloscope

Digital oscilloscopes sample analog channels to store and display them. In general, the more channels the better, although adding channels adds to the oscilloscope price.

Man choosing the right number of oscilloscope channels

 

Your application will determine whether you need to choose an oscilloscope with two, four, six, or even eight analog channels. Two channels let you compare a component’s input to its output, for example. Four analog channels let you compare more signals and provides more flexibility to combine channels mathematically (multiplying to get power, or subtracting for differential signals, for example). Oscilloscopes with six or eight channels allows for multiple bus analysis while simultaneously viewing voltage or current type signals in a power related environment.

A Mixed Signal Oscilloscope adds digital timing channels, which indicate high or low states and can be displayed together as a bus waveform. Whatever you choose, all channels should have good range, linearity, gain accuracy, flatness, and resistance to static discharge.

Some instruments share the sampling system between channels to save money. But beware: the number of channels you turn on can reduce the sample rate.

Compatible oscilloscope probes

Good measurements begin at the probe tip. The scope and probe work together as a system, so be sure to consider probes when selecting an oscilloscope.

When taking measurements, probes actually become a part of the circuit, introducing resistive, capacitive, and inductive loading that alters the measurement. To minimize the effect, it’s best to use probes that are designed for use with your scope.

Select passive probes that have sufficient bandwidth. The probe’s bandwidth should match that of the oscilloscope.

A broad range of compatible probes will allow you to use your scope in more applications. Check to see what’s available for the scope before you buy.

Oscilloscope probes for various applications

 

Passive probes: Probes with 10X attenuation present a controlled impedance and capacitance to your circuit, and are suitable for most ground-referenced measurements. They are included with most oscilloscopes – you’ll need one for each input channel.

High-voltage differential probes: Differential probes allow a ground-referenced oscilloscope to take safe, accurate floating and differential measurements. Every lab should have at least one.

Logic probes: Logic probes deliver digital signals to the front end of a Mixed Signal Oscilloscope. They include “flying leads” with accessories designed to connect to small test points on a circuit board.

Current Probes: Adding a current probe enables the scope to measure current, of course, but it also enables it to calculate and display instantaneous power.

Need help choosing the right probe? See our Probe Selector Guide

Triggering capabilities of an oscilloscope

All oscilloscopes provide edge triggering, and most offer pulse width triggering. To acquire anomalies and make best use of the scope’s record length, look for a scope that offers advanced triggering on more challenging signals.

 

Oscilloscope trigger displays

 

The wider the range of trigger options available the more versatile the scope (and the faster you get to the root cause of a problem):

  • Digital/pulse triggers: pulse width, runt pulse, rise/fall time, setup-and-hold
  • Logic triggering
  • Serial data triggers: embedded system designs use both serial (I2C, SPI,CAN/ LIN…) and parallel buses.
  • Video triggering

Oscilloscope record Length

Record length is the number of points in a complete waveform record. A scope can store only a limited number of samples so, in general, the greater the record length, the better.

Time captured = record length/sample rate. So, with a record length of 1 Mpoints and a sample rate of 250 MS/sec, the oscilloscope will capture 4 ms. Today’s scopes allow you to select the record length to optimize the level of detail needed for your application.

A good basic scope for example will store over 2,000 points, which is more than enough for a stable sine-wave signal (needing perhaps 500 points), whilst more advanced high-end scopes would have up to 1Gpoints, which is essential for working with high-speed serial data type applications. 

Oscilloscope waveform capture rate

Waveform capture rate, expressed as waveforms per second (wfms/s), refers to how quickly an oscilloscope acquires waveforms. The waveform capture rates of oscilloscopes vary greatly, so it’s important to find the right one for your application.

Oscilloscopes with high waveform capture rates provide significantly more visual insight into signal behavior, and dramatically increase the probability that the oscilloscope will quickly capture transient anomalies such as jitter, runt pulses, glitches and transition errors.

Digital storage oscilloscopes (DSO) employ a serial processing architecture to capture from 10 to 5,000 wfms/s. Some DSOs provide a special mode that bursts multiple captures into long memory, temporarily delivering higher waveform capture rates followed by long processing dead times that reduce the probability of capturing rare, intermittent events.

Most digital phosphor oscilloscopes (DPO) employ a parallel processing architecture to deliver vastly greater waveform capture rates. Some DPOs can acquire millions of waveforms in just seconds, significantly increasing the probability of capturing intermittent and elusive events and allowing you to see the problems in your signal more quickly. 

Oscilloscope expandability

As your needs change, you want an oscilloscope that can accommodate your needs with application modules and software updates.

If you want to expand the capabilities of your oscilloscope over time, make sure your instrument has everything you need. For instance, some oscilloscopes allow you to:

  • Add memory to channels to analyze longer record lengths
  • Add application-specific measurement capabilities
  • Complement the power of the oscilloscope with a full range of probes and modules
  • Work with popular third-party analysis and productivity
  • Windows-compatible software
  • Add accessories, such as battery packs and rack mounts

Connectivity of an oscilloscope

After you’ve analyzed your oscilloscope measurements, you’ll need to document and share your findings. The connectivity of an oscilloscope delivers advanced analysis capabilities and simplifies the documentation and sharing of results. 

Depending on the oscilloscope, you may have access to standard interfaces (GPIB, RS-232, USB, and Ethernet), network communication modules, or advanced features that allow you to:

  • Create, edit and share documents on the oscilloscope, all while working with the instrument in your particular environment
  • Access network printing and file sharing resources
  • Access the Windows® desktop
  • Run third-party analysis and documentation software
  • Link to networks
  • Access the Internet
  • Send and receive e-mail

Need help choosing an oscilloscope? Download our oscilloscope selector guide or contact the experts at Tektronix to request a demo. If you already have a sense of which oscilloscope to buy, shop Tektronix oscilloscopes today.

Find the Best Oscilloscope from Tektronix for Your Application

Top Oscilloscope for Education & Teaching Labs

TBS1000C DSO oscilloscope front view

Tektronix TBS1000C DSO

Offering affordable performance in a compact design, the TBS1000C digital storage oscilloscope provides the features, versatility and durability required by today's educational institutions, embedded designers, and maker community. 

Bandwidth 50 MHz - 200 MHz 
 Analog Channels 2
 Sample Rate 1 GS/s
  • 7-inch WVGA color display with 15 horizontal divisions shows 50% more signal
  • 32 automated measurements enable fast and convenient testing of a wide variety of signal conditions
  • Dual window FFT with simultaneous time and frequency domain views to understand signal frequency content
  • Disable autoset cursors and measurements
  • Trigger frequency counter
  • Pan and zoom capability to quickly see signal details in an area of interest
  • Multi-language user interface with support for ten languages in the user interface and front panel overlay
  • Small footprint and light weight
  • Fanless design for low noise operation

View Tektronix TBS1000C 2 Channel Digital Storage Oscilloscope

Best Oscilloscope for Portability & Handheld Capability

Angle view of 2 Series MSO Oscilloscope

Tektronix 2 Series MSO

Unlock more space on your bench without compromising performance. At only 1.5 inches thick and less than 4 pounds, the 2 Series MSO is a full featured, real-time touchscreen oscilloscope in a compact, portable form factor that feels like a tablet. On the benchtop, in the classroom, or to the field, take it wherever your measurement challenges take you.

Analog Bandwidth 70 MHz, 100 MHz, 200 MHz, 350 MHz, 500 MHz
Analog Channels 2 or 4
Digital Channels 16 (optional)
Sample Rate 1.25 GS/s - 2.5 GS/s
  • Optional two-slot battery pack supports up to 8 hours of battery life and can be hot swapped in the field.
  • Full suite of capture and analysis capabilities with advanced triggers, search and mark, math and measurements
  • Optional 16 channel MSO, 50 MHz, AFG and 4 bit digital pattern generator
  • Supports decoding, triggering and analysis for the most common serial protocols
  • Industry standard VESA mount for use with various accessories

View 2 Series Portable Mixed Signal Oscilloscope

Oscilloscope Best Designed for Low-Bandwidth RF Analysis (EMI/EMC) & Power Application

Front view of 3 Series MDO

Tektronix 3 Series MDO

With the largest display in class, improved low-level signal measurement accuracy and industry-leading probe performance, the 3 Series MDO sets a new standard for bench oscilloscopes. Whether you’re testing your baseband design for IoT or just for simple EMI sniffing, the 3 Series has a unique true hardware spectrum analyzer built right in with superior RF test performance and guaranteed RF specifications

Bandwidth Up to 1 GHz
Analog Channels 2 or 4
Digital Channels 16
Sample Rate 2.5 GS/s - 5 GS/s
  • TPP Series probes included standard. One per analog channel.
  • Industry-best capacitive probe loading of 3.9 pF
  • 250 MHz, 500 MHz or 1 GHz probe bandwidth depending on instrument bandwidth

View 3 Series Mixed Domain Oscilloscope

Best Oscilloscope for Power Application

Front view of 4 Series B MSO

Tektronix 4 Series B MSO

The versatile 4 Series B MSO has the performance to address tough design challenges and a user interface that works the way you expect. With a new upgraded processor system, it delivers accurate measurements faster with an outstanding range of analysis tools.

Bandwidth Up to 1.5 GHz
Analog Channels 4 or 6
Digital Channels Up to 48
Sample Rate 6.25 GS/s
  • A new processor system for
    • 2X more responsive user interface
    • Faster analysis
    • Faster data transfers
  • New display technology for greater contrast and wider viewing angle
  • New annotations indicate key reference levels and times for measurements
  • Full support for e*Scope browser-based remote access and control
  • 2 new USB 3 host interfaces provide faster data transfers
  • Waveform histograms for greater insight into noise and jitter

View 4 Series B Mixed Signal Oscilloscope

Best Oscilloscope for Power System Design, Wide Bandgap (WBG), SiC/Gan

Front view of 5 Series B MSO

Tektronix 5 Series B MSO

Get a complete view of your design with high-fidelity waveforms, insightful measurements, unique spectrum analysis, and flexible probing. Experience the intuitive user interface appreciated by engineers everywhere.

Bandwidth Up to 2 GHz
Analog Channels 4, 6 or 8
Digital Channels Up to 64
Sample Rate 6.25 GS/s
  • 12-bit resolution at 1.25 GHz; 16-bit resolution at 50 MHz
  • Built-in DDCs enable multi-channel, synchronized spectrum analysis
  • Results tables, measurement statistics, histograms, and trend plot views
  • Support for over 25 serial protocols covering the most common interfaces
  • Advanced single-phase and three-phase power analysis packages
  • Measurement tools for signal integrity and power integrity
  • Optional Windows® operating system lets you run PC software

View 5 Series Mixed Signal Oscilloscope

Top Ranking Oscilloscope for Data, Power, and Advanced Research, Motors, Drives & Inverters (IMDA)

Front view of 6 Series B MSO

Tektronix 6 Series B MSO

For analyzing and debugging systems with GHz clock and bus speeds, the 6 Series B MSO provides the best signal fidelity with the lowest input noise and up to 10 GHz analog bandwidth. With its intuitive touchscreen user interface, a 15.6-inch high definition display and FlexChannel™ inputs, the 6 Series is a high-performance instrument that’s also a pleasure to use.

Bandwidth 1 GHz, 2.5 GHz, 4 GHz, 6 GHz, 8 GHz, 10 GHz

Digital Channels

Up to 64 (optional)

Input Channels

4, 6 or 8
Sample Rate Up to 50 GS/s
  • 15.6 inch, HD capacitive touch display delivers unmatched signal visibility
  • 4 FlexChannel™ inputs can each handle 1 analog or 8 digital signals
  • Lowest noise at high sensitivity
  • >70% noise reduction from previous generation oscilloscopes
  • 12-bit Analog-to-digital converters with enhanced resolution up to 16 bits

View 6 Series Mixed Signal Oscilloscope

Best Oscilloscope Engineered for High-Performance, Mil/Gov, Advanced Communications

DPO70000SX ATI Performance Oscilloscope

Tektronix DPO70000SX Series

Whether you’re at first power-up on your latest design, verifying compliance to the fastest standards, or researching fundamentals of the universe, these oscilloscopes deliver the performance, precision, and tools to get your job done faster.

Analog Bandwidth 8 GHz–33 GHz
Analog + Digital Channels 4 (DPO), 4 + 16 (MSO)
Sample Rate (2/4 Channels) 100/50 GS/s
  • 8 to 33 GHz true analog bandwidth for measurements on the latest high-speed serial standards.
  • 100 GS/s sample rate on 2 channels.
  • 16 logic channels with 80 ps timing resolution for debug of digital and analog signals (MSO70000 models).
  • iCapture - One connection for analog and digital signals (MSO70000 models).
  • Fastest waveform capture rate with >300,000 wfms/s maximum.

View DPO70000SX ATI Performance Oscilloscope

Die Wahl des richtigen Oszilloskops für Einsteiger und Bastler

Sich an Elektronikprojekte heranzuwagen, kann aufregend sein. Mit den richtigen Werkzeugen wird diese Reise einfach und macht Spaß. Ein einfach zu bedienendes Oszilloskop ist wichtig, weil es Ihnen hilft, die elektronischen Signale in Ihren Projekten zu sehen und zu verstehen.

Vereinfachte Tests mit automatisierten Funktionen

Automatisierte Messungen können dazu beitragen, Ihren Prüfprozess effizienter zu gestalten. Ziehen Sie Oszilloskope in Betracht, die eine Reihe dieser Messungen bieten, um verschiedene Signalbedingungen einfach zu bewerten, was Ihnen Zeit spart und den Lernprozess erleichtert.

Eingehende Signalanalyse

Um Ihre Signale besser zu verstehen, sollten Sie sich für ein Oszilloskop entscheiden, das über fortschrittliche Analysetools wie die schnelle Fourier-Transformation (FFT) verfügt. Sowohl die Zeit- als auch die Frequenzbereichsansicht bieten Einblicke in den Frequenzgehalt Ihres Signals.

Einfache Bedienung

Es ist wichtig, dass ein Oszilloskop auch für Anfänger einfach zu bedienen ist. Achten Sie auf Modelle mit einer übersichtlichen Benutzeroberfläche, mehrsprachiger Unterstützung und einem einfach zu handhabenden Design, damit Ihr Oszilloskop benutzerfreundlich ist.

Funktionen zur Unterstützung des Lernens

Lernhilfen

Einige Oszilloskope verfügen über Bildschirmhilfe, Tutorials oder sogar integrierte Handbücher, die für Anfänger sehr hilfreich sein können, da sie sofortige Unterstützung und Ratschläge bieten.

Auf die Ausbildung zugeschnittene Funktionen

Für Bildungseinrichtungen gibt es Oszilloskope mit Funktionen, die speziell zur Unterstützung des Lernens entwickelt wurden, z. B. die Möglichkeit, komplexe Messungen auszuschalten. Dies hilft den Lernenden, sich auf die Grundlagen zu konzentrieren.

Langlebigkeit und Support

Die Wahl eines Oszilloskops von einer renommierten Marke mit gutem Support und Garantien kann Ihnen Sicherheit geben. Wählen Sie Modelle mit zuverlässigem technischem Support und starken Garantien, um Ihren Kauf abzusichern.

Das TBS1000C: Ihr Begleiter bei der Erkundung der Elektronik

Ob Sie als Hobbybastler gerade erst anfangen oder als Pädagoge die Lernerfahrung Ihrer Schüler bereichern möchten, das TBS1000C Oszilloskop ist ein unschätzbares Werkzeug. Seine Mischung aus fortschrittlichen Funktionen, die auf eine einfache Bedienung zugeschnitten sind und der speziellen Unterstützung für den Unterricht machen es zu einer idealen Wahl, um sich in der aufregenden Welt der Elektronik zurechtzufinden. Begeben Sie sich mit dem TBS1000C auf eine Reise in die Welt der Elektronik und erschließen Sie neue Möglichkeiten für Ihre Forschungen.

Entdecken Sie das TBS1000C

Frequently Asked Questions (FAQ)

What is the best oscilloscope to buy?

When looking for the best oscilloscope to purchase, several factors come into play. Consider the bandwidth, sample rate, number of channels, and any additional features that align with your requirements. Popular brands like Tektronix offer a wide range of high-quality options suitable for various applications. For a detailed guide on decision-making factors, you can refer to this comprehensive document that provides in-depth insights into how to classify the best oscilloscope based on your specific needs.

What is the best oscilloscope for beginners?

For beginners, an oscilloscope that strikes a balance between usability and functionality is ideal. Look for models with simple user interfaces, built-in help features, and good overall usability. The TBS1000C 2-channel oscilloscope are often recommended for their user-friendly designs and affordability, making them great choices for newcomers.

What is the importance of bandwidth and sample rate?

Bandwidth and sample rate are two critical specifications for real-time oscilloscopes because they determine the oscilloscope's ability to accurately capture and represent analog signals.

The bandwidth of an oscilloscope defines the range of frequencies it can accurately capture. It is the -3 dB point on the frequency response curve, indicating the upper limit of the signal frequency that can be properly measured. Higher bandwidth oscilloscopes can capture and display signals with higher-frequency components more accurately. Lower bandwidth oscilloscopes may distort or attenuate high-frequency content, leading to inaccuracies in signal representation. The bandwidth of an oscilloscope is closely related to its rise time, which is the time it takes for the voltage to transition from 10% to 90% of its final value. A higher bandwidth oscilloscope has a faster rise time, allowing it to capture and display fast edge transitions more accurately.

The sample rate of an oscilloscope defines how many data points the oscilloscope records per second. Higher sample rates allow the oscilloscope to capture and represent rapid changes in voltage over time. A high sample rate helps prevent aliasing, which occurs when an oscilloscope undersamples a signal with high-frequency components. Incorrect representation of the signal leads to measurement errors. To accurately reconstruct and display a signal on the oscilloscope's screen, you need enough data points within each waveform period. A higher sample rate provides more data points and allows for more precise signal representation.

 

What triggering options should I look for?

Triggering is essential for capturing specific events in a waveform. Edge and pulse width triggering are standard on most real-time oscilloscopes. The triggering options you should consider depend on your specific measurement needs and the types of signals you'll be working with. Some of the advanced triggering options include pattern trigger, serial bus trigger, runt trigger, hold-off and delay trigger, visual trigger, and more.

What is the difference between analog and digital oscilloscopes?

TEK-XYZ-Primer-C2-Figure11

Analog oscilloscopes represent waveforms using continuous signals, while digital oscilloscopes convert signals into digital data for display. Digital oscilloscopes offer more advanced features, such as signal analysis and storage capabilities, but analog oscilloscopes may be preferred for certain applications due to their simplicity.